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Exact solutions in closed form have been found using the singularity method for 
various quadratic flows of an unbounded incompressible viscous fluid at low 
Reynolds numbers past a prolate spheroid with an arbitrary orientation with 
respect to the fluid, The quadratic flows considered here include unidirectional 
paraboloidal flows, with either an elliptic or a hyperbolic velocity distribution, 
and stagnation-like quadratic flows as typical representations. The motion of 
a force-free spheroidal particle in a paraboloidal flow has been determined. It is 
shown that the spheroid rotates about three principal axes with angular velocities 
governed by a set of Jeffery orbital equations with the rate of shear evaluated at 
the centre of the spheroid. These angular velocities depend on the minor-to-major 
axis ratio of the spheroid and its instantaneous orientation, but are independent 
of its actual size. The spheroid also translates at a variable speed, depending on 
its orientation relative to the surrounding fluid, along a straight path parallel to 
the main flow direction without any side drift or migration. This ‘jerk’ motion 
obeys a trajectory equation which is size dependent. 

1. Introduction 
An exact solution for the motion of a spheroidal particle placed in a quadratic 

as well as in a linear flow of incompressible viscous fluid is very useful in the study 
of blood flow and general suspension rheology. In particular, a correct description 
of the behaviour of a spheroidal particle in a paraboloidal or Poiseuille flow will 
facilitate accurate calculation of the bulk flow properties of tube flows of dilute 
or concentrated suspensions of blood cells, long-chain polymers or any other 
biological supra-macromolecules. When the Reynolds number based on the 
particle size, the local flow velocity and the kinematic viscosity of the sur- 
rounding fluid is very small, as in the case of microcirculation of blood cells, the 
inertial effects of the fluid can be neglected and the Navier-Stokes equations of 
motion reduce to the Stokes equations as a first approximation. 

Although the Stokes equations are linear, to obtain exact solutions to  them 
for arbitrary body shapes or complicated flow conditions is still a formidable task. 
On the basis of a sophisticated analysis of ellipsoidal harmonics, Oberbeck (1876) 
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solved the problem in which an ellipsoid translates through liquid at a constant 
speed in an arbitrary direction. Edwardes (1892), applying the same technique, 
obtained the solution for the steady motion of a viscous fluid in which an ellipsoid 
is constrained to rotate about a principal axis. The motion of an ellipsoidal 
particle in a general linear flow of viscous fluid at  low Reynolds number has been 
solved by Jeffery (1922), whose solution was also built up using ellipsoidal 
harmonics. Adopting the singularity method, a different approach from the 
classical treatment of ellipsoidal harmonics, Chwang & Wu (1974,1975) obtained 
a number of exact solutions for both exterior and interior Stokes-flow problems 
involving spheroids, spheres and circular cylinders. The fundamental singu- 
larities used in constructing these exact solutions are the Stokeslet and its 
derivatives, such as the rotlet, stresslet and potential doublet, for exterior flow 
problems (see also Hancock 1953; Batchelor 1970) and the Stokeson and its 
derivatives, called the roton and stresson, for interior flow problems (Chwang 
& Wu 1975). 

Comparing the singularity method with the boundary-value method, we find 
that the former is simpler and more versatile than the latter provided that 
enough is known about the types of singularities required and their distribution 
range and densities for the specific body shape and given free-stream conditions. 
To this end, Chwang & Wu (1975) gave in their conclusions a set of empirical, yet 
useful rules regarding the types of singularities required for constructing exact 
solutions for given flow conditions. These rules provide guidelines for future 
developments in the singularity method at low Reynolds numbers. In  the special 
case of slender bodies, Chwang & Wu (1974) obtained an asymptotic relationship 
between the nose curvature and the singularity strength near the end of its axial 
distribution. This asymptotic relationship was subsequently found by Wu & 
Chwang (1974) to be valid also for slender bodies in potential flows. The results 
established so far seem to suggest that the distribution range of the singularities 
depends only on the geometry of a given body, not on the flow conditions. Thus 
the distribution range determined for plane-symmetric bodies in potential flows 
(Wu & Chwang 1974) may be valid in Stokes flows as well. The densities or 
strengths of the required singularities are dictated by the boundary conditions 
to be satisfied on the surface of a given body. 

It was the simplicity and elegance of the singularity method which stimulated 
the present author to use it to determine the motion of a spheroidal particle in 
a general quadratic flow field. Apart from the classical solution for a sphere in an 
axisymmetric paraboloidal flow which was obtained by Simha (1936; see also 
Chwang & Wu 1975,s 9) there were no solutions available for a general quadratic 
flow past a spheroid because of the overwhelming analytical difficulties. However 
this difficulty has now been overcome by an effective application of the singularity 
method, as we shall see in $3 2-6 of this paper. 

A solution is given in $ 2  for an unbounded longitudinal paraboloidal flow 
u = (/3y2 + 9) e, (U being the velocity vector and e, a unit vector in the longi- 
tudinal or x direction) past a prolate spheroid whose surface is given by 
x2/a2 + y21b2 + z2/b2 = 1, where a is the semi-major axis and b the semi-minor axis. 
This paraboloidal flow may be either elliptic or hyperbolic depending whether 
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the constant /3 is positive or negative. When p vanishes, the paraboloidal flow 
degenerates into a two-dimensional parabolic flow. For arbitrary positive values 
of /?, it represents Hagen-Poiseuille flow through a pipe of elliptic cross-section. 
If /? = 1, it becomes a paraboloidal flow of revolution which corresponds to 
Hagen-Poiseuille flow in a circular tube. Hyperbolic paraboloidal flow (p  < 0) 
may not exist physically, but it can certainly serve as a local component of a more 
complicated flow field. The corresponding solution for a transverse paraboloidal 
flow past a prolate spheroid is presented in $ 3. In $$4 and 5, longitudinal and 
transverse stagnation-like quadratic flows past a prolate spheroid are analysed, 
respectively. 

The motion of a spheroidal particle placed arbitrarily in a paraboloidal flow is 
determined in $6 .  It is discovered from this exact solution that the spheroid 
rotates about its centre according to a set of Jeffery orbital equations [(56) and 
( 5 7 ) ] .  Moreover the spheroid as a whole moves in a straight line parallel to the 
flow direction, without any side drift, at a variable speed which is governed by 
a trajectory equation [equation (53 ) ] .  Thus the present exact solution demon- 
strates definitely that there is no side drift or migration of rigid spheroidal 
particles in a paraboloidal flow if the flow is unbounded and the inertial effects 
of the fluid are completely neglected. Finally, this author feels that the 
new phenomenon of jerking motion revealed by (53) may have interesting 
consequences in future investigations of blood flow. 

2. Longitudinal paraboloidal flow past a prolate spheroid 
We consider first a paraboloidal flow with velocity profile 

U = (py2 + z2) e,, (1) 

e,, e, and e, being the base vectors in the x, y and x directions respectively, pa.st 
a prolate spheroid (see figure 1 a) 

x2/a2 + r2/b2 = 1 (r2 = y2 + 9, a 2 b) ,  P a )  

(2 b )  

whose focal length 2c and eccentricity e are defined by the usual relationship 

c = (u2-b2)+ = eu (0 6 e < 1). 

The paraboloidal flow given by (1) is parallel to the x or longitudinal axis of the 
spheroid (2). The constant /? in (1) further classifies the flow to be elliptic para- 
boloidal i f p  is positive or hyperbolic paraboloidal if /3 is negative. As p vanishes, 
(1) degenerates into a two-dimensional parabolic flow. In  this and all subsequent 
sections we shall assume that the inertia of the fluid is completely negligible and 
the incompressible viscous fluid satisfies the Stokes equations of motion 

v.u  = 0, vp = p u ,  (3% b )  

where u is the velocity vector, p the pressure and p the (constant) viscosity 
coefficient of the fluid. 

Before we apply the singularity method t o  construct an exact solution for this 
problem, a few words about the fundamental singularities of the Stokes equations 

2-2 
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X 

FIUTJRE 1. Schematic diagrams for (a) a longitudinal paraboloidal flow, (a) a transverse 
paraboloidal flow, (c) a longitudinal stagnation-like quadratic flow and (a) a transverse 
stagnation-like quadratic flow past a prolate spheroid. 

may be helpful. The primary fundamental solution of (3), corresponding to a 
point force at  the origin, is called a Stokeslet (Hancock 1953). The velocity Us, 
pressure Ps and vorticity rs = V x Us of a Stokeslet of strength a are given by 
(see Batchelor 1970; Chwang & Wu 1975 for more details) 

Us(x; a) = a/R+(a .x)x /R3 (R = [xi), (44 
Ps(x; a) = 2pa.x/R3, (4b) 
&(x; a) = 2a x x/R3, (4 4 

where x = xe, + yey + ze, is the position vector in three-dimensional Euclidean 
space. The total force exerted on this Stokeslet by the surrounding fluid is 

F = - 8n,ua. (5) 
Since the Stokes equations (3) are linear, a derivative of any order of a Stokeslet 

is also a solution of (3). In  particular, the antisymmetric part of a Stokes doublet, 
called a rotlet, satisfies (3) by itself. A rotlet corresponds to a point torque at  the 
origin. The velocity, pressure and vorticity of a rotlet of strength y are given by 

UR(x; y) = t V  x US(x; y) = y x x/R3, ( 6 a )  
Wx; y) = 0, ( 6 b )  
z;R(x; y) = -y/R3+3(y.x)x/fl+Cny8(x), (6 c) 

where 6(x) is the three-dimensional Dirac delta function. The total moment 
exerted on this rotlet by the surrounding fluid is 

while the total force on it is zero. 
M = - 8npy, 7) 
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The symmetric part of a Stokes doublet produces another singularity, called 
a stresslet. Its velocity, pressure and vorticity are 

a,P) = [-a.p/B3+3(a.x)(CJ.x)/R5]x, ( 8 4  
(8 b)  
(8 c )  

In virtue of its symmetry, there is no net force or moment exerted on a stresslet 
by the surrounding fluid. 

A potential doublet in Stokes flow can be obtained by contracting a Stokes 
quadrupole or simply by applying the Laplace operator to a Stokeslet as 

Pss(x; a,P) = 2p[-a.P/R3+3(a.x)  (p .x) /R5] ,  
?&(x; a ,@)  = 3R-5[(f3.x)a+(a.x)P]xx. 

U,(x; 6 )  = - ~ 0 ~ U s ( x ;  6 )  (1x1 * 0) .  (9a) 

(9 b)  

The velocity of a potential doublet given by (9a)  may be rewritten as 

U,(X; 8) = - 8/R3 + 3(8. X )  x/R5, 
which is exactly the same as that of a doublet in potential flow. However, owing 
to the assumption of negligible inertia, a potential doublet in Stokes flow exerts 
no pressure, that is 

(9 c )  PD(x; 6) = 0. 

With the above singularities clarified, we now proceed to construct an exact 
solution for longitudinal paraboloidal flow past a prolate spheroid from a suitable 
distribution of these singularities and their derivatives. Since the average of the 
velocity ( 1) over the spheroidal surface (2) is 

(I  +P)aZ(i-e2)[e(i +2e2)(i-e2)9+(4e2-l)sin-1e]ex 
8e2[e( 1 - e2)* + sin-l el 

which does not vanish, a line distribution of Stokeslets in the x direction is needed. 
According to the rules of Chwang t Wu (1975), potential doublets are required 
whenever Stokeslets are present. As the y derivative of (1) gives a shear flow 
2ye, and ashear-flow solution (see Chwang & Wu 1975, $4) requires a line distribu- 
tion of stresslets, rotlets and potential quadrupoles, we need here a line distribu- 
tion of y derivatives of these singularities. Similarly, we need z derivatives of the 
singularities associated with the shear flow 2zex. All these singularities are, of 
course, distributed along the x axis between the foci x = & c .  For the density of 
each individual singularity, we assume, from experience, a constant density for 
Stokeslets, a parabolic density for potential doublets, quartic densities for all 
Stokes quadrupoles and sextic densities for all potential octupoles. On this basis 
we find the solution to be of the form 

2 (10) 
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P = 2(1 +P)PX+A, P,(X-5; e,)dt Sr, 
+ ~ ~ c ( c 2 - 5 " ) 2  [ c l ~ p S S ( x - ~ ;  a e z 7 e ~ ) + E 1 5 p s f ? ( x - c ;  a ez7 ' z ) ]  ( I i b )  

where (and below) 5 = Eez, A,, B,, C,, D,, El ,  F,, Q, and H, are constants and the 
fundamental solutions Us, U,, Us, and U, are defined by (4), (6), (8) and (9) 
respectively. The first term 2(1 +,d),ux on the right-hand side of (11 b)  is the 
prevalent pressure corresponding to the given paraboloidal flow ( 1 ) .  Obviously 
the velocity and pressure given by ( 1  1)  satisfy the Stokes equations (3) and also 
the boundary conditions on u and p at infinity. The boundary condition to be 
satisfied on the spheroidal surface (2 a)  is the no-slip condition 

u = 0 on x2/a2 + r2/b2 = 1. (12) 

Using (12), the constants A,, B,, etc., can be determined uniquely. Curtailing the 
details, which are straightforward although very cumbersome, we obtain the 
constants as 

( 1 3 4  
2e2 

I - e2 I - 3 p e  - ( I  +e2) log [( 1 +e)/( 1 - e)]}' 
6e2 6e2 

1-e2 1-8  

(1 + p) eza2( 1 - e2) 
A B -  - 

Hl 9 c, = - GI, El = - 

( 1 3 4  

( 1 3 4  

6e - (3  - e2) log - l - e  ' 

2e( 15 - 4e2) - 3(5 - 3e2) log - 
l - e  ' 

2e( 3 - 5e2) l + e  
(1 - e2)2 1 -e'  T3 = - +3l0g- 

-310g- l - e  ' 
2e( 3 - 2e2) T5 = 4 

- 3(5 - e2) log - 2e( 15 - 13e2) 
T6 = 7 

1 - e  [ i -ez  
(13 i) 

( 1 3 3  
12e2 T. T, = 3(1-e2)T,+- I-eZ 

The total force acting on the spheroid (2) can be obtained from (5) and (13a) as 

(14) 
167r,u( 1 +/3) e3a3( I - e2) e, 

3( - 2e + ( 1  + e2) log [( 1 + e)/( 1 - e)]}. 
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This force, or drag, may be regarded as associated with that on the same prolate 
spheroid in a uniform flow with an equivalent velocity (see Chwang & Wu 1975, 
equation (28) for the drag on a prolate spheroid in a uniform flow) 

(15) U, = Q( 1 +p) a2( 1 - e2)  ex, 
which is, however, different from the surface-average velocity (10). Only when 
the spheroid (2) degenerates into a sphere, that is e --f 0 (or a -+ b ) ,  does the equiva- 
lent velocity (15) become the same as the surface-average velocity (lo), both 
having the value i ( 1  +/3)a2. 

In  the limiting case of a sphere (e 3 0), we deduce from the above solution that 
ase-tO 

Consequently, applying the identity 

(16) 
a a 

aY U&; e,) -- UR(x; e,) = U,(x; e,), 

we have the velocity u and drag F on a sphere of radius a in a paraboloidal 
flow (1) as 

F = 2np( 1 + p) a3e,. (17 b)  
For an axisymmetric paraboloidal flow (p = l) ,  (17) further reduce to 

F = 4n,ua3ex, (18 b )  
which agree with the result of Simha (1936) and also with equations (68) of 
Chwang & Wu (1975). In  obtaining (18) from (17), we have applied the identities 

a a a2  
- Us&; e,, e,) +ax Us,&; e,, e,) = - U&; ex) -+ U&; ex), aY 8x2 (19) 

(20) 
a2 (-$+g) U,(x; e,) = --+,(x; ax e,) (1x1 * 0) 

in addition to identity (16). 
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3. Transverse paraboloidal flow past a prolate spheroid 
We next consider a transverse paraboloidal flow with velocity profile 

U = ( ax2 + z2) e, (21) 

past the prolate spheroid specified by (2) (see figure l b ) .  The constant a in (21) is 
arbitrary. As in the solution in 3 2, we need here a line distribution of Stokeslets, 
potential doublets, Stokes quadrupoles (derivatives of stresslets and rotlets) and 
potential octupoles. The exact solution for the velocity u and pressure p can be 
expressed as 

u = (az2+z2)e ,+A2jc  -c Us(x-g; e,)dE+B,SC -C (c2-%)UD(x-g; e,)d& 

The eight new constants A,, . . . , H, can be determined from the no-slip condition 
(12), which gives 

(23 a )  
2e2 2e2a2( 1 +a - e2) A , = - -  

1 - e2 B2 = - 3 p e  + (3e2- 1) log [(I + e ) / ( l -  e)l>' 
6e2 

G2, E ,  = - H2, 
6e2 

CZ = G 2  1-e2 

(23 e) 
3(5- 3e2) - 

2 

where the T's are given by (13) and the Q's by 

1 -e  
e(45 - 78e2 + 29e4) 

Q 4 = 3 [ -  2 (1-e2)2 

3(15 - e2)  
+ 

The total drag on the prolate spheroid may be obtained easily from (5) and 
(23a), which give 

(25) 
32n;ue3a3( 1 +a - e2) e, 

3(2e + (3e2 - 1) log [( 1 + e)/( 1 - e)]}- 
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This drag could be regarded as that experienced by the prolate spheroid ( 2 )  when 
placed in a uniform flow of equivalent velocity 

U, = $u2(l+a-e2)e,. (26 )  
In  the limiting case of a sphere ( e  -+ 0 ) )  (25) reduces to 

lim F = 2np( 1 +a) a3e,. 
e-0 

In  the meantime, the velocity u, given by (22a),  becomes 

In  obtaining the above expression for the velocity field around a sphere, we have 
used the identity 

( 2 8 )  
a a 

ax ,,U,(x; e,) -- U&; e,) = U&; eJ .  

As a matter of fact, (27 b )  is a counterpart of expression (17a).  

4. Longitudinal stagnation-like quadratic flow past a spheroid 

stagnation-like quadratic flow with velocity (see figure 1 c) 
We now consider the problem of a spheroid given by (2) placed in a longitudinal 

( 2 9 )  U = x2e, - 2xyell, 
which obviously satisfies the continuity equation ( 3  a )  and the momentum 
equation (3 b )  if the pressure associated with it is 2px.  The stagnation plane is the 
centre-plane x = 0. In  the half-space x < 0 the flow is towards the stagnation 
plane while in the half-space x > 0 it is away from this plane. This type of quad- 
ratic flow is important since it can serve as a component in the general study of 
the motion of a spheroidal particle placed in a paraboloidal flow whose direction 
does not coincide with any one of the principal axes of the spheroid (see $ 6  of 
this paper). The exact solution for the velocity field involves a line distribution, 
between the foci x = +c,  of Stokeslets, potential doublets and some Stokes 
quadrupoles and potential octupoles with constant, parabolic, quartic and sextic 
densities respectively. Thus the velocity u and pressure p take the following 
forms: 

u = z ~ e , - 2 x y e , + ~ , / ~  - C  ~ ~ ( x - 5 ;  ~ , ) ~ s + B , S C  - C  ( c 2 - ~ 2 ) u ~ ( x - ~ ;  e,)dE 

a + jc (c2 - EY [.: u,,(x -5; ex, e,) + ~~z uSS(x -5; e,, e,) 
- C  

1 a 
aY 

+ G - USS(x-5; ex, e,) d5 

- C  ax ay 
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and 

1 a a 
+ 0 3 ~ P s s ( x - g ; e y , e y ) + G  --~s(X-$;e,,e,) d5. (30b)  aY 

The seven constants A,, . . . , G3 are determined uniquely by the no-slip boundary 
condition (12) as 

(31 a)  

(31b) G, = 

E, = (N4C3++N6F3)/N5, F3= [(l-e2)T~+T,~/2T,I-1, (31 4 

3 (31 4 c, = 

T4 4 
T 3 ’  

D --- e2u2 

A -  , - 3{2e-(1+e2)log[(1 +e)/(l-e)]}’ 3 -  

T6 1 -e2 B, = - A,  + 4( 1 - e2) a2C3 - 24e2a2E3, 
2e T,, 

(gTeN5 - N3N6) F3 - ( f N2D3) 
N,N* + NIN5 

where the T’s are defined in (13) and the (constant) N’s by ‘+‘I, & = 3 [ ~ - -  e(3-e2) 3+e2 
1-e  2 4e-(2-e2)log- 

N, = 30( 1 - e2) TI, N4 = 16e3/( 1 - e2)  - 2T5, (32 b )  

(32 c) 
96e5 6e2 

(1  - e2)2 1-e2 
N5 = - +4(1-e2)T4, N6 = - T + (1 - e2) T4. 

The total drag force on the spheroid is evaluated from ( 5 )  and (31 a) ,  which give 

(33) 
1 6n-,ue3a3ez 

3{ - 2e + (1 +e2) log [(l +e)/( 1 -e ) ] } ’  

which reduces in the limiting case of a sphere (e -+ 0)  to the following: 

lim F = 27rpa3ex. (34) 
e-0 

The corresponding velocity field for a sphere can be deduced from (30u) as 

5. Transverse stagnation-like quadratic flow past a spheroid 
For a transverse stagnation-like quadratic flow with velocity profile 

U = 2xyex - y2e, (36) 
past a spheroid (see figure 1 d) ,  the solution is analogous to that of the previous 
section. Since the y derivative 2xex- Zye, of (36) represents a two-dimensional 
extensional flow and a two-dimensional extensional flow needs stresslets and 
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potential quadrupoles for constructing an exact solution, we require the y 
derivatives of these singularities for the present problem. As the main flow (36) 
has a net streaming motion in the - y direction, Stokeslets and their associated 
potential doublets, both in they direction, are required. All the above singularities 
are distributed along the x axis between the foci z = & c of the given spheroid (2).  
Thus the solution can be expressed as 

u = 2xye,-y2e,+A, U,(x-g; e,)d[+B,/C (c2-E2)UD(x-g; e,)dE 
- C  

a a 
aY 

+ B  -pss(x-g; e , ,e , )+~, -p~~(x-5;  ax e,,e,)]d~. (37b) 

By applying the no-slip boundary condition (12) on the spheroidal surface ( 2 ) ,  
we determine the seven unknown constants A,, . . . , G, in (37) as 

2e2a2( 1 - e2) A -  , - 3{2e + (3e2 - 1 )  log [( 1 + e)/(  1 - e)]}' 

+ 3(5 - 3e2) log- ' + ']]'. (38 b )  
6e2 2e( 15 - 34e2 + 23e4) 

1 - e  
D -- 

4 - 1 ~ ~ 2  

1 - e2 B4 = 4a2( 1 - e2) (C4 + 6,) - 24e2a2E, - - 2e2 A49 

G4 = - C, + ( 1  f T6 F4 + 3OT3EJ/K2, 

c4 = ( K l  F4-8T6E4)/T1, 

E4 = (' + K 4 / K 2  + K C  F4)/K59 

where the (constant) K s  are given by 

K ,  = - 5e(21- ( 3 9 a )  

2e 1 ~ e 3  
9, = 12 [--log=], 1-e2 K3 = K2- 4T5, K4 = 9 3  + T5, (39 b)  

K - N 5 - A - -  5T T 30T3 K ,  
2T1 K ,  ' 6 -  

18e2 K T T K 
1-e2 K2 Tl 

K6 =- T + 4 6 - -  + 3( 1 - e2) T4, ( 3 9 4  

with N5 and TI, . . ., T, defined in (32 c )  and ( 1  3 d-i) respectively. 
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can be obtained from (5) and (38 a) : 
The total drag force exerted on the given spheroid by the surrounding fluid 

(40) 
32npe3a3( 1 - e2) e, 

3{2e + ( 3e2 - 1) log [( 1 + e)/( 1 - e)]]' 
This drag is in the - y direction, as it should be since the main stagnation-like 
quadratic flow has a net streaming motion in the - y direction. 

In  the limiting case of a sphere (e -+ 0) ,  the velocity u and drag F reduce to 
a3 e, 5a5 a u = 2xye,- y2ey+- 4 (R -+- Z) +-- 12 a y ( - S + F )  

F = - 2npa3e,. (42) 
It is noted that (41) and (42) become identical to (35) and (34) on replacing 
x, y, e, and e, in (34) and (35) by - y, x, -ear and e, respectively. 

This solution corresponding to  transverse stagnation-like quadratic flow past 
a prolate spheroid, like the one in $4, plays an important role in determining the 
general motion of& spheroidal particle placed arbitrarily in a paraboloidal flow as 
discussed in the next section. 

6. Motion of a spheroidal particle in a paraboloidal flow 
With all the background knowledge about quadratic flows past a prolate 

spheroid provided by $Q 2-5, we now proceed to consider the motion of a prolate 
spheroid placed arbitrarily in a paraboloidal flow of unbounded incompressible 
viscous fluid. Let the surface of the spheroid be given again by 

x2/a2 + r2/b2 = 1 (r2 = y2 + z2, a 2 b )  
in the co-ordinate system (x, y,z) fixed with respect to the body (see figure 2, 
where the z axis is pointing out of the paper, towards the reader). Without loss 
of generality, let the paraboloidal flow be of the form 

in the co-ordinates ( E ,  y, c),  which are related to the co-ordinates (x, y, z )  by 

where 0 is the angle between the x and 6 axes and h is the distance between the 
centre 0 of the spheroid and the 5 axis. 

The paraboloidal flow (43 a) may be expressed in the body co-ordinates (5, y, z )  
by using the relationship (44) : 

U = K(y2 + 6) el ( 4 3 4  

6 = xcosB+ysinB, y+h = -xsinB+ycosO, c = z ,  (44) 

U = Kh2(cos Be, + sin Be,) - 2Kh( y cos2 Be, - x sin2 Be,) 
+ 2Kh sin 0 cos 8 (xe, - ye,) + K cos 0(y2 cos2 O + 22) e, 
+ Ksin 8(x2  sin2 i3 + z2) e, + K sin2 8 cos B(x2ez - 2xye,) 
- K sin 6 cos2 8( Bxye, - yze,). (43 b )  
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FIQURE 2. Relative orientation of a prolate spheroidal particle with respect t o  
a paraboloidal flow of incompressible viscous fluid. 

The first term on the right-hand side of (43b)  represents a uniform flow; the drag 
force acting on a prolate spheroid (2) in this flow is (see Chwang & Wu 1975, 9 3 )  

167rpe3aKh2 COB 0 
Fl = e,+ - - 2e + ( 1  + e2) log [(I + e ) / ( i  - e ) ]  

32mpe3aKh2 sin 0 
2e + (3e2- I )  log [ ( t  + e ) / ( ~  - e ) ]  

(45 )  

The second term - 2Kh(y  cos2 Be, - x sin2 Be,) on the right-hand side of (43 b )  
designates shear flow. There is no force involved with this type of shear flow. 
However, in this shear flow the fluid exerts a moment or torque on the spheroid 
about the z axis. This moment can be evaluated easily to yield (see Chwang & Wu 
1975, $54 and 5 )  

(46 )  
64mpe3a3Kh( 1 - e2 cos2 0) M =  

3{-  2e + (1 + e2) log [(I + e ) / ( i  - e ) ] }  e z *  

The third term, 2Kh sin 0 cos 0(xe, - ye,), characterizes a two-dimensional exten- 
sional flow. The exact solution for this type of flow past a prolate spheroid can be 
constructed without any difficulty in a manner similar to that discussed in 3 8 of 
Chwang & Wu’s (1975) paper for a three-dimensional extensional flow. Curtailing 
the details, we note that there is no net force or moment exerted on the spheroid 
by this type of flow owing to the symmetry of the body and of the flow. 

Unlike the uniform or linear flow fields, the last four terms on the right-hand 
side of (43b)  are all quadratic flows. The drag force associated with the longi- 
tudinal paraboloidal flow K cos 8(y2 cos2 0 + 9) e, is [see (14) with B replaced by 
cos2 el 

(47 )  
16npesa3( I - e2) K cos B( 1 + cos2 0)  

- 3 { - 2 e + ( l  +e2)log[(1 + e ) / ( l - e ) ] ) e x ‘  
F -  
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From (25), the drag associated with the transverse paraboloidal flow 

K sin O(x2 sin2 O + x 2 )  e, 

is found to be (replacing a by sin2 0 )  

(48) 
32npe3a3K sin e( 1 + sinz 8 - e2) 

- 3{2e + (3e2 - 1) log [( 1 + e ) / (  1 - e ) ] )  ey* 
F -  

The contributions to the total drag from the last two terms of (43  b ) ,  namely the 
longitudinal stagnation-like quadratic flow K sin2 0 cos 8(x2ex - 2 q e , )  and the 
transverse stagnation-like quadratic flow - K sin 0 cos2 8(2xye ,  - y2e,) ,  are [see 

F4 = 3( - 2e+ (1 +e2) log [(I +e)/( l  -el]) e, 

F -  

(33 )  and (40)1 

(49) 

(50) 

16npe3a3K sin2 8 COB 0 

32npe3a3( 1 - e2) K sin 0 cos2 8 
- 3{2e + (3e2 - 1) log [( 1 + e)/( 1 - e ) ] )  eu and 

respectively. Combining (45) and (47)-(50), the total drag force on the spheroid 
is therefore 

5 

i= l  

1677pe3aK cos 8[h2 + 4a2(2 - e2 - e2 cos2 O ) ]  
- 2e + (1 + e2)  log [( 1 + e ) / (  1 - e ) ]  F = F,L = -ez 

3.2npe3uK sin O[h2 + Qa2(2 - e2 - e2 cos2 e)] 
+ se+(3e2-i) log[(1+e)/( l -e)]  e,' (51) 

The total moment is given by (46). 
If the spheroidal particle is allowed to move freely in the fluid, the resultant 

force and the resultant moment on the particle must both vanish at  every instant. 
Since the Stokes equations are linear, these conditions can be satisfied only if the 
spheroidal particle rotates about the x axis with an angular velocity 

2Kh( 1 - e2 cos2 0 )  
( 2 - e 2 )  o =  e, 

and in the meantime translates with a linear velocity 

u = [Kh2 + QKa2(2 - e2 - e2 cos2 e)] es, (53 )  

where er is related to e, and e, by ec = cos 8ex +sin Be,. The moment due to the 
rotation (52 )  of a prolate spheroid about its minor axis is of exactly the same 
magnitude as that in (46) but in the opposite direction (see Chwang & Wu 1975, 
5 7 for rotation about a minor axis). Similarly, the drag due to translation (53 )  
is of the same magnitude as and opposite to (51). 

Equation (52 )  is the Jeffery (1922)  orbital equation for the motion of a prolate 
spheroid in a shear flow with the shear rate evaluated at the spheroid's centre. 
The angular velocity given by (52) is not a constant: it  varies as the orientation 
angle 8 changes. This angular velocity also depends on the eccentricity e of the 
given spheroid, but is independent of its actual size. The angular velocity reaches 
its maximum value of 2 K h / ( 2 - e 2 )  at 0 = Qr and its minimum value of 
2Kh( 1 - e2)/(2 - e2) a t  0 = 0. In  the limiting case of an elongated rod (e -+ l), the 
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2 n  

3n 

fn 

0 

0.5 ,/ I’ 
0.5 r 

2Khq 1 - e2)8/(2 - e2) i - e2)*/(2 - e2) 

FIGURE 3. (a) The angular position 8, ( b )  the dimensionless angular velocity w/Kh and 
(c) the dimensionless translational velocity (u - Kh2)/(Ku2) m. the dimensionless time 
BKht(1- e2)4/(2-ea) over a complete oycle for a paraboloidal flow past a prolate spheroid. 
Minor-to-major axis ratio, b/u: -, 0.1 ; - -, 0-5. 

angular velocity attains a maximum value of 2 K h  a t  8 = in, and vanishes like 
2Khb2/a2 at 8 = 0. It is of interest to note that the maximum angular velocity 
2 K h  of a very elongated rod is exactly the vorticity at the centre of the rod. At 
8 = 0,  the motion becomes steady for an elongated rod because of the vanishing 
angular velocity. In  the limiting case of a sphere ( e - +  0) ,  at the other extreme, the 
angular velocity becomes constant, having a value of Kh, which is precisely half 
the vorticity at the centre of the sphere. There is no rotation whatsoever for a 
prolate spheroid of arbitrary axis ratio if its centre lies on the 6 axis (h  = 0) .  

The magnitude w of the angular velocity is related to the angle 0 and time t by 
w = d8/dt. Equation (52) can be integrated to give 

8 = tan-l{( 1 - e2)t tan [2Kht( 1 - e2)4/(2 - e2)]}, (54) 

with the initial condition 8 = 0 at t = 0. The angular position 8 is plotted us. the 
dimensionless time ZKht( 1 - e2)4/(Z - e2) in figure 3 (a )  for a complete period 
between 0 and 277. It is noted from figure 3 (a)  that as the minor-to-major axis 
ratio b/a becomes small, i.e. as the spheroid becomes slender, the angular position 
8 behaves like a step function with step discontinuities around the stationary 
values 0,n and 2 n  of 8. The dimensionless angular velocity w / K h  given by (52) is 
plotted in figure 3 (b )  against the dimensionless time ZKht( 1 - e2)4/(2 - e2). We 
notice from figure 3 ( b )  that, as the spheroid becomes slender, the angular velocity 
behaves like a delta function with peaks situated at times equal to &n and Qn. 
This type of motion of a very elongated rod may be described as ‘flip’ motion. 
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Equation (53) does not occur in uniform flow or linear flows; it is characteristic 
of paraboloidal flows. We note first from (53) that this velocity is in the 5 direc- 
tion. Hence the spheroidal particle translates along a straight path parallel to the 
main flow, without any side drift or migration. Second, we note that this velocity 
is not constant, having its maximum value of Kh2 + QKu2(2 - e2) a t  8 = $IT and 
its minimum value of Kh2+3Ku2(l -e2)  at 6’ = 0. Therefore the spheroidal 
particle jerks along its straight path. This ‘ jerk’ motion is present even if the 
centre of the spheroid lies on the f axis ( h  = 0). The magnitude of this jerk motion 
depends on the actual size a as well as the eccentricity e of the spheroid. In  the 
limiting case of a sphere (e+ 0)’ the translational velocity becomes constant, 
having a value of Kh2 + # K d ,  which is the same as the surface-average velocity 
over the spherical surface. On the other hand, as the spheroid becomes very 
elongated (e+ 1 ) ,  the translational velocity reaches a maximum value of 
Kh2 + QKa2 a t  8 = in (flow normal to the body axis) and a minimum value of 
Kh2 + gKb2 a t  8 = 0 (flow tangential to the body axis). Therefore when the flow 
is tangential to the axis of a very elongated rod, the rod is equivalent to a sphere 
of radius b, the maximum radius of the rod. When the flow is normal to the axis 
of a very elongated rod, it is equivalent to a sphere of radius u/42, about 0.707 
times the half-length of the rod. When the centre of an elongated rod lies on the 
E axis and the radius of the rod is very small, the velocity becomes steady at 
8 = 0, vanishing like QKb2. 

In figure 3 ( c ) ,  the translational velocity (u-Kh2)/(Ka2) is plotted us. the 
dimensionless time 2Kht( 1 - e2)*/(2 - e2) over a complete cycle for b/a = 0.1 and 
0.5. We notice from this figure that the translational velocity behaves like a delta 
function when the spheroid becomes very slender (b/u < 1 ) .  This is precisely the 
characteristic of the ‘jerk’ motion. 

We may extend the above result to a more general case. Suppose that the 
paraboloidal flow is still given by (43a)  in a co-ordinate system (E ,  q, 5) fixed in 
space where the g axis is chosen such that it is parallel to the shortest line segment 
connecting the centre of a spheroidal particle and a point on the E axis. Let us 
denote the shortest distance between the spheroid’s centre and the 6 axis by h. 
The surface of the spheroid is again defined by (2a)  in the body co-ordinate 
system (x, y, z ) ,  which is related to the fixed co-ordinate system (&q, 5 )  by the 
three Euler angles 8, Q, and @ such that 

cos 8 -sin 8 cos $ sin 8 sin $ 

- sin $ sin $ 
sin 8 cos $ cos 8 cos $ cos $ 

sin 0 sin Q, cos 8 sin$ cos $ 

- cos 8 cos $ sin $ 

- cos 8 sin $ sin $ 
-+ cos 4 sin $ -k cos Q, cos 4 

In  other words, if we place the origin of the (6, q, 5)  co-ordinates at the spheroid‘s 
centre, t9 is the angle between the x and 5 axes, Q, the angle between the 6, r,~ and 
g, x planes and $the angle between the <, x and x, y planes. Omitting the details, 
we find that the translational velocity of the spheroid is still governed by (53). 
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However the resultant rotational motion of the spheroid is given by the following 
equations: 

4(30~0+# = KhsinBsin#, (56 a)  

(1 - e2) cot 0 sin 9, 2Kh 
2 - e 2  

$=-- 

which are related to the angular velocities about the body axes x, y and z by 

w, = (hcos0+#, 
wy = Bsin@-4sinecos$, 
o, = 6cos@++sinesin$. 

We note that (56) and (57) are the Jeffery orbital equations corresponding to 
a shear flow - 2Khyec with the rate of shear given by the vorticity at the centre 
of the spheroid. Equations (56) and (57) reduce to (52) when 9 = 0 and @ = 0. 

7. Conclusions 
We have given in this paper exact solutions for a prolate spheroid in various 

quadratic flows a t  low Reynolds numbers. All  exact solutions were constructed 
by the singularity method. Regarding the singularity method in general, we may 
observe the following. 

(i) In  addition to the five rules proposed by Chwang & Wu (1975), we find 
that, if the solution for a flow of reduced degree aU/i?x, (i = 1, 2,  3) requires 
certain singularities, then the xi derivatives of these singularities are needed to 
construct the solution associated with the flow U. 

(ii) The flow alone determines the necessary types of singularities. 
(iii) The distribution range of all singularities seems to depend on the body 

geometry only. The distribution range determined for a plane-symmetric body 
in a potential flow (Wu & Chwang 1974) may also be valid in all types of Stokes 
flows. 

(iv) For a prolate spheroid, exact solutions demand a constant density for 
Stokeslets, a parabolic density for rotlets, stresslets and potential doublets, 
a quartic density for various Stokes quadrupoles and potential quadrupoles and 
a sextic density for Stokes octupoles or potential octupoles, etc. 

As for the motion of a spheroidal particle in a paraboloidal flow, we note the 
following. 

(v) A spheroidal particle rotates about all three principal axes with angular 
velocities which are determined completely by a set of Jeffery orbital equations 
[(56) and (57)]. 

(vi) If the fluid is unbounded and its inertia neglected, the centre of the 
spheroidal particle moves along a straight path, parallel to the main flow direc- ". 
tion, without any side drift or migration. 

(vii) Along this straight path, the spheroid moves with a variable speed 
3 F L M  72 
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depending on its instantaneous orientation with respect to the fluid. This ‘jerk’ 
motion is governed by a trajectory equation (53) which is size dependent. 

(viii) Side drift may take place when the particle is deformable or the fluid is 
bounded by walls or when the inertial effects are taken into account. 

Although the exact solutions obtained in this paper are for prolate spheroids, 
they may also be valid for oblate spheroids because of their analyticity. 

The author is greatly indebted to Professor Sir James Lighthill, Professor 
Theodore Y. Wu and Dr E. John Hinch for their invaluable suggestions and com- 
ments. He also wishes to express his sincere thanks to the John Simon 
Guggenheim Memorial Foundation for awarding him a fellowship. 
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